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Topics to be covered:

1. Discussion on several data representations
and a global algorithm comparison
framework
— Why it is needed?

— How it can be done efficiently?
— A framework for comparison among the data
representations

2. In-Situ early Convergence detection on a
Monte Carlo based simulation called openMC



Various Data summarization
techniques and a framework
to compare them



Efficient data representations

* Impossible to store all the raw data

— Large size (Petabyte ~ Exabyte)
— Bottleneck in I/O
— Flops are free, not the disk space

e Efficient data summarization

techniques are needed

— Reduce the size of the data

— Still preserve necessary details

— Answer domain specific questions

MPAS ocean simulation



Create Data Representations

* Prioritization of data
— An In-Situ framework
— Partitioning and Summarizing

— Estimation of error in the data representation
scheme p ~

Application
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Data Representations

* Partitioning Schemes:

— Kd-tree based partitioning ':':;
— Voronoi tessellation \

— Distributions (In future)

An illustrative partitioning example



Partition Summarization

* Find a representation for the partitions
— Mean, Median or Midpoint

e Estimate the quality of the partitioning and
the incurred error

— Sum of squared error (sse)
— pAIC



A generalized framework for
comparing across data representations

* |[n order to compare across different schemes
we need a comparison framework

* A python based Score-boarding framework

e Goals:

— A global scale parameter study on the parameter

space of the representations
e Storage requirements for the representation

* Error of the representation



A generalized framework for
comparing across data representations

_Fiag Fiag
o [miartspit_|mean median [temperature | = v
T [miarispin|mean median _[temperature | T = G
2 [miamispit_|mean median [ temperature | T = v
I\ |O 0 A 3 |[midPtsplit | median median | temperature | F 25 T
4 [miarispit_|median median | temperature | T = T
5 |miartspit | median median | temperature | T > v
& [miamtspit_|mean moan | temperature |F 25 T
_Fiag Fias
o [miarispit | mean median | temperature |F = -
7 [miartspin|mean median [ temperature | T = -
Al o » 2 [miamtspit | mean median [ temperature | T 2 v
O » 5 [miarispit_[median | median [tmperaturs [F =s -
- a midPtSplit median median temperature [T 25 L
5 [miartspit|median median _[temperature | T = v
6 [miamtspit |mean mean [temperature |F = G
A . @ @
data ®
DIrOCE O  J
-
_Fias
o [miamispit_|mean median_[temperature |F 25 v
7 [miartspin_[mean modian _[temperature | T 25 v
2 mMidPtSplit mean median temperature | T 25 F
AY[e 0 5 [miartspit | median median _[temperaturs [ 25 -
+ [miamtspit_|median median _|temperature | T = T
5 [miartspit_|median modian | temperature | T 2 -
& [miamtspit | mean moan | temporature |F 2 -

Y O
ata Partition Error

Partitioning Summarization Computation

Algorithm XYZ




A generalized framework for
comparing across data representations

* Run on all parameter combinations
* Final product is a database table

— Keeps track of all the parameters used for a run

— Can be queried efficiently to order based on
different parameters

— Each representation will have their own
parameter study table

— Multiple tables can be joined and compared for
finding the best parameter combinations



Some test parameters and results

Comparing data partitioning schemes:
— Kd-tree partitioning

— Voronoi tessellation

— Distributions (In future)

Partition representations

— Mean

— Median

— Midpoint

Dimensions used to split

Stopping Criteria
— Max entropy of a partition
— Specific value range of a variable
— Max tree depth
Error Metric
— pAIC



Summarization Results ordered by
PAIC

partitionRep | errorRep | use_randomized_init_points | min_cell_area |refinement_metric | max_depth | storage |raw_Size | variable | pAIC sse estErr
0 [median max F 24 Average_abs_error |50 0.01002 |2.2102 TEMP 0.00150 | 136.54635 | 1198.00510
1 |median max F 8 Average_abs_error |50 0.01012 (2.2102 TEMP 0.00151 [ 138.34750 | 1194.39175
2 [median max F 16 Average_abs_error |50 0.01008 |2.2102 TEMP 0.00151|139.01264 | 1205.51937
3 [median max T 8 Average_abs_error |50 0.01428 (2.2102 TEMP 0.00172 [ 145.36286 | 1297.65176
4 |median max T 16 Average_abs_error |50 0.02208 |2.2102 |TEMP [0.00230 |189.37300 | 1566.22197
5 |median max T 24 Average_abs_error |50 0.02792 |2.2102 |TEMP [0.00253 | 193.12431 | 1609.63746
6 [mean max F 16 Average_abs_error |50 0.07873 (2.2102 TEMP 0.00447 [264.13807 | 1910.36650
7 |mean max F 24 Average_abs_error |50 0.07873 |2.2102 TEMP 0.00447 (264.13807 | 1910.36650
8 |mean max F 8 Average_abs_error |50 0.07879 |2.2102 |TEMP [0.00448 [263.87691 | 1909.07034
9 [mean max T 8 Average_abs_error |50 0.08888 |2.2102 TEMP 0.00484 | 276.08041 | 1974.23433
10 |mean max T 16 Average_abs_error |50 0.09620 (2.2102 TEMP 0.00521 (288.23234 |2085.16615
11 |mean max T 24 Average_abs_error |50 0.10517 |2.2102 TEMP 0.00554 | 298.03379 |2143.74996
12 | midpt max F 24 Average_abs_error |50 0.15779 |2.2102 |TEMP [0.00887 |667.00535 |3692.38774
13 | midpt max F 8 Average_abs_error |50 0.15786 |2.2102 |TEMP [0.00888 |665.16715 |3699.67178
14 | midpt max F 16 Average_abs_error |50 0.15786 |2.2102 |TEMP [0.00888 [665.16715 |3699.67178
15 | midpt max T 8 Average_abs_error |50 0.16768 |2.2102 |TEMP [0.00921 |668.97354 |3762.93955
16 | midpt max T 16 Average_abs_error |50 0.17469 |2.2102 TEMP 0.00947 (673.65780 | 3790.43463
17 | midpt max T 24 Average_abs_error |50 0.18449 |2.2102 |TEMP [0.00988 |681.35475 |3931.93283
18 | median mean F 24 Average_abs_error |50 0.02792 |2.2102 TEMP 0.12227 | 193.12431 | 134285.33726
19 | median mean F 16 Average_abs_error |50 0.02799 (2.2102 TEMP 0.12270 [ 190.87622 | 134757.53595
20 [ median mean F 8 Average_abs_error |50 0.02800 |2.2102 TEMP 0.12284 | 189.43835 | 134905.42032
21 [ median mean T 8 Average_abs_error |50 0.03637 (2.2102 TEMP 0.15494 (207.57115 | 170178.78300
22 [ median mean T 16 Average_abs_error |50 0.04422 |2.2102 TEMP 0.19174 | 224.96519 | 210659.28119
23 [ median mean T 24 Average_abs_error |50 0.05348 (2.2102 TEMP 0.23212 [246.79074 | 255054.14733
24 | median median |F 24 Average_abs_error |50 0.05348 |2.2102 |TEMP [0.23212 [246.79074 | 255054.14733
25 | median median |F 8 Average_abs_error |50 0.05355 |2.2102 TEMP 0.23229 (247.43829 | 255241.46211




In-Situ early Convergence
detection in openMC



openMC: Monte Carlo Particle
transport code

* OpenMC simulates neutron moving around
randomly in a nuclear reactor

Fission




Goal of the work

Run the simulation code

Develop a Monte Carlo simulation convergence test
Inject the convergence test code into simulation
Test for early convergence detection

Conduct a scale study for performance estimation



Stochastic Oscillator in early
Convergence Detection

 Convergence is detected using the Entropy values of
source distributions

* The stationarity of Entropy values reflect the
convergence

 When convergence is reached:
— The expected value of the stochastic oscillator will be 0.5

Ref: Application of the stochastic oscillator to assess source convergence in monte carlo
criticality calculations, Paul K. Romano, M&C 2009.



Results obtained with Stochastic
Oscillator
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Result of the Stochastic Oscillator with a window of size 30
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Results obtained with Stochastic
Oscillator
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Some other notes

| wrote a converter from VTK multi-block
unstructured dataset to SQLite3 database.

Another converter from VTI to SQLite3
database.

Got familiar with R Studio

g

Got used to Mac! Q






